

2

Part 2: Get Set

Beginners Guide to

Programming in 'C'
A student-friendly guide to learning the 'C' Programming Language

Sanjeevan D'Souza

3

Part 2: Get Set

CHAPTER FOURTEEN

ARRAYS IN 'C'

n important aspect of designing good programs is to organize data

efficiently. This means that memory is not wasted, data can be

easily accessed with minimal code and is consistent. i.e., does not

overflow and maintains the required precision or accuracy.

So, programmers spend a big part of program design, ensuring that the

data is well-organized. So far, we have stored data only in individual

variables. In this and later chapters, we will see how to store and access

data in collections efficiently.

Arrays

An array is a collection of similar data of the same data type. If you need

multiple variables for the same kind of data, you can create a single array

to access this collection.

For example, if we wanted to store the age of 100 students, we can declare

100 variables to store each student's age. If we do this, then the code

required to process these variables would need to be repeated for each

variable, and it would be tedious to process them, as shown below

1. int age1, age2, age3;

2. int sum = 0;

3. double avg;

4.

5. printf(“Input Age: “);

6. scanf(“%d”, &age1);

7. sum += age1;

A

4

Part 2: Get Set

8.

9. printf(“Input Age: “);

10. scanf(“%d”, &age2);

11. sum += age2;

12.

13. printf(“Input Age: “);

14. scanf(“%d”, &age3);

15. sum += age3;

16.

17. avg = sum/3.0;

18. printf(“Sum is %7.2f\n”, avg);

In this example, we have considered only three age variables instead of

100.

We first declare them in line 1.

It's important to note that the variables are not necessarily created

contiguously in memory when you declare variables. Each variable can

theoretically be anywhere in memory, and we can access the values within

the variable by directly referencing the variable name, as is done in line

numbers 6,7, 10, 11, etc. This addressing is called Direct Addressing.

Also, because we have three distinct variables, lines 6-8 must be repeated

multiple times for each variable name to perform the program's function.

It would result in many lines of code being written, and most of the code

would be duplicated over & over again, making the program longer and

challenging to maintain.

The three age variables are logically the same. i.e., they contain age

information, and the same operations are performed on them.

This is an excellent case to use arrays. An array is used to declare a

collection of logically similar variables of the same data type, where you

want to perform the same operations on all of them.

An array is allocated contiguous memory.

The syntax of an array declaration is shown below

1. Data_type array_name [number of elements];

5

Part 2: Get Set

2. Data_type array_name [number of elements] =
 {initializer list};

3. Data_type array_name[] = {initializer list};

Example:

1. int age[100];

2. int age[100] = {23,25,20,22,23};

3. int age[] = {23,25,20,22,23};

The first line declares an int array called age, with 100 elements. The

elements in the array are uninitialized if it is declared locally or zero if

declared globally.

The second line declares an int array called age, with 100 elements. Only

the first five elements of the array are initialized. The remaining are

uninitialized if declared locally or zero if declared globally.

The third line declares an int array called age but does not specify the

number of elements in the array. Instead, it has an initializer list. In this

case, the size of the array is the number of initializers in the initializer list,

which is 5.

An array occupies a contiguous block of memory. The size of the block is

the product of the number of elements in the array and the size of the array

data type.

In line 1, the size of the array is 4 * 100 = 400 bytes

In line 2, the size of the array is 4 * 100 = 400 bytes

In line 3, the size of the array is 4 * 5 = 20 bytes

The number within the square brackets ([]) is the number of elements in

the array. You can access each element of the array by using the base-

indexed form of addressing, as shown below

Array_name[index]

6

Part 2: Get Set

The array name is the starting address of the array. The index provides the

element number being accessed. The index can range from 0 for the 1st

element of the array, to n-1 where n is the number of array elements.

Note that the first element of the array has an index of 0.

So, the base indexed form of addressing is as follows

Base Address + (sizeof each element of the array * index)

We can visualize an array in memory, as shown below

The last row in the diagram shows the index to each element of the array.

The top line shows the address of each contiguous byte in the array. Each

cell in the middle row will contain the data of the element in the array.

So, if the array is called age and the data type is int, each array element is

4 bytes. The start of the array is at address 2001. You can address the 3rd

element of the array as follows

Age[2]

This will result in the calculation of the starting address of the 3rd element

of the array as follows

2001 + (4 * 2) = 2009

As you can see, 2009 is the starting address of the 3rd element of the array.

The advantage of using arrays and the base-indexed form of addressing in

arrays is that the array elements can be processed efficiently using loops.

2001 2002 2003 2004

2005

2006

2007

2008

2009

9

2010

2011

2012

2013

2014

2015

2016

0 1 2 3

7

Part 2: Get Set

Let us see an example of this.

Problem

Input the age of 10 students and find the largest and smallest age.

Pseudocode

1. Initialize MaxAge, MinAge to zero

2. Initialize Age to 0

3. Initialize an array Ages[10]

4. For num = 0; num < 10; num++

5. Input “Enter Age: “;

6. Get Age

7. Save Age to array Ages[num]

8. EndFor

9. Store first element of the Ages array in MaxAge and MinAge

10. For num = 1; num < 10; num++

11. If (maxAge < ages[num])

12. maxAge = ages[num];

13. If (minAge > ages[num])

14. minAge = ages[num];

15. EndFor

16. Print maxAge & minAge

17. End

Program

1. #include <stdio.h>
2. #define MAX(a, b) (a > b) ? a : b
3. #define MIN(a, b) (a < b) ? a : b

4. int main(int argc, char* argv[])
5. {
6. int maxAge, minAge;
7. int age;
8. int ages[10];
9. int num;

10. for (num = 0; num < 10; num++)
11. {
12. printf("Input Age: ");
13. scanf("%d", &age);

8

Part 2: Get Set

14. ages[num] = age;
15. }

16. maxAge = minAge = ages[0];

17. for (num = 1; num < 8; num++)
18. {
19. maxAge = MAX(maxAge, ages[num]);
20. minAge = MIN(minAge, ages[num]);
21. }

22. printf("Max Age is %d\n", maxAge);
23. printf("Min Age is %d\n", minAge);
24. }

In the example above, the array ages is declared as an array of 10 integers.

The array is initialized in the for loop in line 14, with data entered from

the keyboard. The array is then read one element at a time, and compared

with the max and min values, to find the largest and smallest values.

Output

The array elements are accessed using index values in variables as well as

constants. Note the following

9

Part 2: Get Set

1. Arrays in 'C' have zero-based indexes.

2. 'C' does not do any bounds checking when elements of the array are

accessed. Thus, you can access memory locations that are not

allocated to the elements of the array, causing run-time errors in your

program

3. The array elements can be accessed randomly. i.e., any element of the

array can be accessed

Multi-dimensional arrays

Arrays declared in the previous sections are single-dimensional arrays. It

means it is a single row of multiple columns. Each column contains an

element of the array. As we have seen, this row occupies contiguous

memory.

A multi-dimensional array is an array of arrays.

A 2-dimensional array can be considered to be an array of one-

dimensional arrays. In this array, there are multiple rows, and each row

contains multiple columns. Note that all rows will have the same number

of columns.

A 3-dimensional array is an array of two-dimensional arrays.

Below diagrams show how these multi-dimensional arrays are represented

Single dimensional array

int arrname[4];

2001 2002 2003 2004

2005

2006

2007

2008

2009

9

2010

2011

2012

2013

2014

2015

2016

0 1 2 3

10

Part 2: Get Set

Here the array declared is a single-dimensional array with four elements.

The array name is the starting address of the array, arrname with one

subscript refers to an element of the array.

2- dimensional array

int arrname[2][4];

This array declaration declares a 2- dimensional array, with two rows and

four columns. Just like a single-dimensional array, it is allocated

contiguous bytes of memory. To access an element of the array, you need

to specify two indexes, The row index and the column index. As shown

below

arrname[0][2] – Access the first row, 3rd element

Here, you require two subscripts to access an element of the array. The

array name refers to the starting address of the array, array name and one

subscript (i.e., arrname[1]) refers to the starting address of a row, and

array name and two subscripts refer to an element of the array.

3-dimensional arrays

int arrname[2][2][4];

A 3-dimensional array is an array of two-dimensional arrays. It requires

three indexes to reference an element of the array. A three-dimensional

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

[0][0] [0][1] [0][2] [0][3]

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

[1][0] [1][1] [1][2] [1][3]

11

Part 2: Get Set

array can be considered to be a cube. Here each two-dimensional array is

placed one behind the other, as in a cube.

A 3-dimensional array is also allocated contiguous memory and is

represented in memory, as shown below.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

[0][0][0] [0][0][1] [0][0][2] [0][0][3]

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

[0][1][0] [0][1][1] [0][1][2] [0][1][3]

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

[1][0][0] [1][0][1] [1][0][2] [1][0][3]

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

[1][1][0] [1][1][1] [1][1][2] [1][1][3]

12

Part 2: Get Set

To access an element in a 3-dimensional array, you need to have three

indexes, the 1st index is the index to the 2-dimensional array, the 2nd index

is the row of the 2-dimensional array being accessed, and the 3rd index is

the element of the row.

Initializing a multi-dimensional array

A multi-dimensional array is initialized as shown below

1. int ages [2][3] = {

2. {20,30,40},

3. {21,31,41}

4. };

Here each row is initialized with its initializer list, contained within an

outer initializer list. A comma separates each item in the initializer list (,).

Let's demonstrate the usage of a two-dimensional array with a more

complex example.

Problem

Input the marks of 10 students in the 1st and 2nd grades, and display the largest and smallest marks

for each grade.

Pseudocode

1. int marks[2][10]; /* Array to store marks for 10

2. students, and 2 grades */

3. int maxMarks[2];

4. int minMarks[2];

5. int grade, student, marksVal;

6.

7. For (grade = 0; grade < 2; grade++) /* For 2 grades */

8. /* Nested loop for 10 students in each grade */

9. For (student = 0; student < 10; student++)

10. Input “Enter Marks: “;

11. Get marksVal

12. Save marksVal in marks[grade][student]

13. EndFor

14. EndFor

15.

16. For (grade = 0; grade < 2; grade++) /* for 2 grades */

17. maxMarks[grade] = marks[grade][0];

18. For (student = 1; student < 10; student++)

13

Part 2: Get Set

19. If (maxMarks[grade] < marks[grade][student])

20. maxMarks[grade] = marks[grade][student];

21. If (minMarks[grade] < marks[grade][student])

22. minMarks[grade] = marks[grade][student];

23. EndFor

24.

25. For (grade = 0; grade < 2; grade++)

26. Print Grade, maxMarks[grade] & minMarks[grade]

27. EndFor

28.

29. End

Program

1. #include <stdio.h>
2. #define MAX(a, b) (a > b) ? a : b
3. #define MIN(a, b) (a < b) ? a : b

4. int main(int argc, char* argv[])
5. {
6. /* 2-dim array to store the marks for 10 students in 2 grades
7. */
8.
9. int marks[2][10];
10. int maxMarks[2]; /* Array to store largest marks */
11. int minMarks[2]; /* Array to store lowest marks */
12. int grade, student, marksVal;

13. /* Input the marks of 10 students in 2 grades, and store in
14. / array The nested loop below, is used to input the marks for
15. / each grade The outer loop is for the 2 grades
16. / The inner loop is for the 10 students
17. */
18. for (grade = 0; grade < 2; grade++)
19. {
20. for (student = 0; student < 10; student++)
21. {
22. printf("Enter Marks for Grade #%d, Student #%d: ",
23. grade + 1, student + 1);
24. scanf("%d", &marksVal);
25. marks[grade][student] = marksVal;
26. }
27. }

28. /* Find the largest and smallest marks in each grade
29. / The nested loop below, is used to find the max and min
30. / values for each grade The outer loop is for the 2 grades
31. / The inner loop is for the 10 students
32. */

14

Part 2: Get Set

33. for (grade = 0; grade < 2; grade++)
34. {
35. minMarks[grade] = maxMarks[grade] = marks[grade][0];
36. for (student = 1; student < 10; student++)
37. {
38. maxMarks[grade] = MAX(maxMarks[grade],
39. marks[grade][student]);
40. minMarks[grade] = MIN(minMarks[grade],
41. marks[grade][student]);
42. }
43. }

44. /* Display the max and min values for each grade */
45. for (grade = 0; grade < 2; grade++)
46. {
47. printf("Grade #%d: Max: %d Min:%d\n", grade + 1,
48. maxMarks[grade], minMarks[grade]);
49. }
50. }

Output

15

Part 2: Get Set

As shown in the example above, processing a 2-dimensional array

typically involves nested loops, the outer loop to process each row, and

the inner loop to process the elements in each row.

Note that loop control statements, like break and continue, will work

within the context of the loop it is written in.

Summary

The simplest form of a data structure is an array. It is a collection of

multiple variables of the same data type that is functionally the same.

Arrays are generally processed using loops to iterate across each element

of the array. This chapter has seen how to declare an array, initialize it,

and iterate through it.

In the next chapter, we will understand how to create user-defined data

types using structures and unions.

16

Part 2: Get Set

